779 research outputs found

    Improving the accuracy of data race detection

    Full text link

    Fast-Growing SMBHs in Fast-Growing Galaxies, at High Redshifts: The Role of Major Mergers As Revealed by ALMA

    Get PDF
    We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at z~4.8. These quasars have rather uniform properties, with typical accretion rates and black hole masses of L/L_Edd~0.7 and M_BH~10^9 M_sol. The sample consists of "FIR-bright" sources with a previous Herschel/SPIRE detection, suggesting SFR > 1000 M_sol/yr, as well as of "FIR-faint" sources for which Herschel stacking analysis implies a typical SFR of ~400 M_sol/yr. Six of the quasars have been observed by ALMA in [CII]{\lambda}157.74 micron line emission and adjacent rest-frame 150 micron continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources - one FIR-bright and two FIR-faint. The companions are separated by ~14-45 kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth

    A New H I Survey of Active Galaxies

    Full text link
    We have conducted a new Arecibo survey for H I emission for 113 galaxies with broad-line (type 1) active galactic nuclei (AGNs) out to recession velocities as high as 35,000 km/s. The primary aim of the study is to obtain sensitive H I spectra for a well-defined, uniformly selected sample of active galaxies that have estimates of their black hole masses in order to investigate correlations between H I properties and the characteristics of the AGNs. H I emission was detected in 66 out of the 101 (65%) objects with spectra uncorrupted by radio frequency interference, among which 45 (68%) have line profiles with adequate signal-to-noise ratio and sufficiently reliable inclination corrections to yield robust deprojected rotational velocities. This paper presents the basic survey products, including an atlas of H I spectra, measurements of H I flux, line width, profile asymmetry, optical images, optical spectroscopic parameters, as well as a summary of a number of derived properties pertaining to the host galaxies. To enlarge our primary sample, we also assemble all previously published H I measurements of type 1 AGNs for which can can estimate black hole masses, which total an additional 53 objects. The final comprehensive compilation of 154 broad-line active galaxies, by far the largest sample ever studied, forms the basis of our companion paper, which uses the H I database to explore a number of properties of the AGN host galaxies.Comment: To appear in ApJS; 31 pages. Preprint will full-resolution figures can be downloaded from http://www.ociw.edu/~lho/preprints/ms1.pd

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. I. Physical Conditions in the X-ray Absorbers

    Full text link
    We present a detailed analysis of the intrinsic X-ray absorption in the Seyfert 1 galaxy NGC 4151 using Chandra/HETGS data obtained 2002 May, as part of a program which included simultaneous UV spectra using HST/STIS and FUSE. NGC 4151 was in a relatively low flux state during the observations reported here, although roughly 2.5 times as bright in the 2 --10 keV band as during a Chandra observation in 2000. The soft X-ray band was dominated by emission lines, which show no discernible variation in flux between the two observations. The 2002 data show the presence of a very highly ionized absorber, in the form of H-like and He-like Mg, Si, and S lines, as well as lower ionization gas via the presence of inner-shell absorption lines from lower-ionization species of these elements. The former is too highly ionized to be radiatively accelerated in a sub-Eddington source such as NGC 4151. We find that the lower ionization gas had a column density a factor of ~ 3 higher during the 2000 observation. If due to bulk motion, we estimate that this component must have a velocity of more than 1250 km/sec transverse to our line-of-sight. We suggest that these results are consistent with a magneto-hydrodynamic flow.Comment: 42 pages, 14 figures. Accepted for publication in The Astrophysical Journa

    Simultaneous Ultraviolet and X-ray Observations of the Seyfert Galaxy NGC 4151. II. Physical Conditions in the UV Absorbers

    Get PDF
    We present a detailed analysis of the intrinsic absorption in the Seyfert 1 galaxy NGC 4151 using UV spectra from the HST/STIS and FUSE, obtained 2002 May as part of a set of contemporaneous observations that included Chandra/HETGS spectra. In our analysis of the Chandra spectra, we determined that the soft X-ray absorber was the source of the saturated UV lines of O VI, C IV, and N V associated with the absorption feature at a radial velocity of ~ -500 km/sec, which we referred to as component D+E. In the present work, we have derived tighter constrains on the the line-of-sight covering factors, densities, and radial distances of the absorbers. We find that the Equivalent Widths (EWs) of the low-ionization lines associated with D+E varied over the period from 1999 July to 2002 May. The drop in the EWs of these lines between 2001 April and 2002 May are suggestive of bulk motion of gas out of our line-of-sight. If these lines from these two epochs arose in the same sub-component, the transverse velocity of the gas is ~ 2100 km/sec. Transverse velocities of this order are consistent with an origin in a rotating disk, at the roughly radial distance we derived for D+E.Comment: 51 pages, including 12 figures. Accepted for publication in ApJ Supplement

    The Primordial Helium Abundance: Towards Understanding and Removing the Cosmic Scatter in the dY/dZ Relation

    Get PDF
    We present results from photoionization models of low-metallicity HII regions. These nebulae form the basis for measuring the primordial helium abundance. Our models show that the helium ionization correction factor (ICF) can be non-negligible for nebulae excited by stars with effective temperatures larger than 40,000 K. Furthermore, we find that when the effective temperature rises to above 45,000 K, the ICF can be significantly negative. This result is independent of the choice of stellar atmosphere. However, if an HII region has an [O III] 5007/[O I] 6300 ratio greater than 300, then our models show that, regardless of its metallicity, it will have a negligibly small ICF. A similar, but metallicity dependent, result was found using the [O III] 5007/HÎČ\beta ratio. These two results can be used as selection criteria to remove nebulae with potentially non-negligible ICFs. Using our metallicity independent criterion on the data of Izotov & Thuan (1998) results in a 20% reduction of the rms scatter about the best fit Y−ZY-Z line. A fit to the selected data results in a slight increase of the value of the primordial helium abundance.Comment: 10 pages, 5 figures, accepted by the Ap

    Quasars as Cosmological Probes: The Ionizing Continuum, Gas Metallicity and the EW-L Relation

    Get PDF
    Using a realistic model for line emission from the broad emission line regions of quasars, we are able to reproduce the previously observed correlations of emission-line ratios with the shape of the spectral energy distribution (SED). In agreement with previous studies, we find that the primary driving force behind the Baldwin Effect (EW ~ L^beta, beta < 0) is a global change in the SED with quasar luminosity, in that more luminous quasars must have characteristically softer ionizing continua. This is completely consistent with observations that show correlations between L_uv, alpha_ox, alpha_uvx, line ratios and EWs. However, to explain the complete lack of a correlation in the EW(NV)--L_uv diagram we propose that the more luminous quasars have characteristically larger gas metallicities (Z). As a secondary element, nitrogen's rapidly increasing abundance with increasing Z compensates for the losses in EW(NV) emitted by gas illuminated by softer continua in higher luminosity quasars. A characteristic relationship between Z and L has an impact on the EW--L_uv relations for other lines as well. For a fixed SED, an increasing gas metallicity reduces the EW of the stronger metal lines (the gas cools) and that of Ly_alpha and especially HeII (because of the increasing metal opacity), while the weaker lines (e.g., CIII] 1909) generally respond positively. The interplay between the effects of a changing SED and Z with L results in the observed luminosity dependent spectral variations. All of the resulting dependences on L_uv are within the range of the observed slopes.Comment: 11 pages, 3 figures, AASTeX aas2pp4.sty, accepted for publication in Ap

    Narrow Components within the Fe Kalpha Profile of NGC 3516: Evidence for the Importance of General Relativistic Effects?

    Full text link
    We present results from a simultaneous Chandra HETG and XMM-Newton observation of NGC 3516. We find evidence for several narrow components of Fe Kalpha along with a broad line. We consider the possibility that the lines arise in an blob of material ejected from the nucleus with velocity ~0.25c. We also consider an origin in a neutral accretion disk, suffering enhanced illumination at 35 and 175 gravitational radii, perhaps due to magnetic reconnection. The presence of these narrow features indicates there is no Comptonizing region along the line-of-sight to the nucleus. This in turn is compelling support for the hypothesis that broad Fe Kalpha components are, in general, produced by strong gravity.Comment: 12 pages, 3 color figures. LaTeX with postscript figures. Resubmitted June 7 2002, to Astrophysical Journal Letter
    • 

    corecore